1.论文
(1)Fu Q, Mengxin B, Zhang Z, et al. Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review[J]. Engineering, 2021. DOI:10.1016/j.eng.2021.07.026.
(2) Fu Q, Li S, Niu D, et al. Passivation and depassivation of chromium alloy steel bars in concrete: A review[J]. Chemical Engineering Journal. DOI:10.1016/j.cej.2025.162032.
(3) Fu Q, Wang Z, Xue Y, et al. Catalysis and Regulation of Graphene Oxide on Hydration Properties and Microstructure of Cement-Based Materials[J]. ACS Sustainable Chemistry & Engineering, 2023. DOI:10.1021/acssuschemeng.3c00109.
(4) Fu Q; Bu M; Li D, et al. Resistance to Sulfate Attack and Chemo-Damage-Transport Model of Sulfate Ions for Tunnel Lining Concrete under the Action of Loading and Flowing Groundwater[J]. ACS Sustainable Chemistry & Engineering, 2021. DOI:10.1021/acssuschemeng.1c05794.
(5) Fu Q; Bu M; Zhang Z, et al. Chloride ion transport performance of lining concrete under coupling the action of flowing groundwater and loading[J]. Cement and Concrete Composites, 2021. DOI:10.1016/j.cemconcomp.2021.104166.
(6) Li D, Niu D, Fu Q, et al. Fractal Characteristics of Pore Structure of Hybrid Basalt–Polypropylene Fibre-reinforced Concrete[J]. Cement and Concrete Composites, 2020, 109(1):103555. DOI:10.1016/j.cemconcomp.2020.103555.
(7)Fu Q, Niu D, Li D, et al. Impact characterization and modelling of basalt‒polypropylene fibre-reinforced concrete containing mineral admixtures [J]. Cement and Concrete Composites, 2018, 93: 246-59. DOI:10.1016/j.cemconcomp.2018.07.019
(8)Fu Q, Zhang Z, Niu D, et al. Understanding the acceleration impact of load and flowing water on the chloride ion transport properties of fly ash-based geopolymer concrete[J]. Cement & concrete composites, 2023. DOI:10.1016/j.cemconcomp.2023.105146.
(9)Fu Q, Zhang Z, Zhao X, et al. Water saturation effect on the dynamic mechanical behaviour and scaling law effect on the dynamic strength of coral aggregate concrete[J]. Cement and Concrete Composites, 2021, 120(9):104034. DOI:10.1016/j.cemconcomp.2021.104034.
(10)Fu Q, Zhu H. Corrosion Development of Low-chromium Alloy Steel Bars in Concrete[J]. Construction and Building Materials. DOI:10.1016/j.conbuildmat.2025.141128.
(11)Fu Q, Zhou H, He Z, et al. Depassivation mechanism of steel bar in concrete under the condition of flowing composite chloride salt and sulfate attack[J]. Construction and Building Materials, 2024(Nov.8):450. DOI:10.1016/j.conbuildmat.2024.138696.
(12)Xie Y, Fu Q, Zheng K, et al. Dynamic mechanical properties of cement and asphalt mortar based on SHPB test[J]. Construction & Building Materials, 2014, 70:217-225. DOI:10.1016/j.conbuildmat.2014.07.092.
(13)Niu D, Li D, Fu Q. A 3D-IFU model for characterising the pore structure of hybrid fibre-reinforced concrete[J]. Materials & design, 2020, 188:108473. DOI:10.1016/j.matdes.2020.108473.
(14)Fu Q, Zhang Z, Zhao X, et al. Effect of nano calcium carbonate on hydration characteristics and microstructure of cement-based materials: A review[J]. Journal of Building Engineering, 2022, 50. DOI:10.1016/j.jobe.2022.104220.
(15)Fu Q, Xu W, Zhao X, et al. The microstructure and durability of fly ash-based geopolymer concrete: A review[J]. Ceramics International, 2021(6). DOI:10.1016/j.ceramint.2021.07.190.
(16)Fu Q, Bu M, Xu W, et al. Comparative analysis of dynamic constitutive response of hybrid fibre-reinforced concrete with different matrix strengths[J]. International Journal of Impact Engineering, 2021, 148(5):103763. DOI:10.1016/j.ijimpeng.2020.103763.
(17)Fu Q, Bu M, Su L, et al. Dynamic triaxial compressive response and failure mechanism of basalt fibre-reinforced coral concrete[J]. International Journal of Impact Engineering, 2021, 156(11):103930. DOI:10.1016/j.ijimpeng.2021.103930.
(18)Fu Q, Zhao X, Zhang Z, et al. Effects of nanosilica on microstructure and durability of cement-based materials[J]. Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems, 2022(404-):404. DOI:10.1016/j.powtec.2022.117447.
(19)Fu Q, Niu D, Zhang J, et al. Impact response of concrete reinforced with hybrid basalt-polypropylene fibers [J]. Powder Technology, 2018, 326: 411-24. DOI:10.1016/j.powtec.2017.12.022.
(20)Fu Q, Zhang Z, Wang Z, et al. Erosion behavior of ions in lining concrete incorporating fly ash and silica fume under the combined action of load and flowing groundwater containing composite salt[J]. Case Studies in Construction Materials, 2022. DOI:10.1016/j.cscm.2022.e01659.
(21)Fu Q, Xu W, Huang D, et al. Dynamic non-linear Mohr-Coulomb strength criterion for hybrid basalt-polypropylene fibre-reinforced concrete under impact loading[J]. Archives of Civil and Mechanical Engineering, 2021, 21. DOI:10.1007/s43452-021-00248-w.
(22)Fu Q, Zhou H, Bu M, et al. Probing the dual mechanism of load damage and flowing solution on sulfate attack resistance of alkali-activated slag concrete[J]. Journal of Sustainable Cement-Based Materials, 2025, 14(1):19-35. DOI:10.1080/21650373.2024.2423209.
(23)Liu B, Li D, Fu Q, et al. Applicability of fractal models for characterising pore structure of hybrid basalt–polypropylene fibre-reinforced concrete [J]. 2023, 62(1). DOI:10.1515/rams-2022-0272.
(24)Fu Q, Xue Y, Bu M, et al. Insights into chloride ion transport in alkali-activated slag concrete subjected to load damage and leaching [J]. Journal of Materials Science, 2025, 60(1): 588-603. DOI:10.1007/s10853-024-10521-x.
(25)Fu Q, Wang Z, Bu M, et al. Constitutive behaviour and modelling of hybrid basalt–polypropylene fibre-reinforced concrete considering coupling effect of fibre reinforcement and mechanical damage[J]. Materials and Structures, 2022, 55(6):1-25. DOI:10.1617/s11527-022-01987-9.
(26)傅强,赵旭,何嘉琦,等.基于能量转化原理的混杂纤维混凝土本构行为[J].硅酸盐学报, 2021.
(27)傅强,郑克仁,谢友均,等.水泥乳化沥青砂浆孔体积的分形特征[J].硅酸盐学报, 2013, 41(11):7.
(28)傅强,王振华,薛颖锟,等.玄武岩纤维增强珊瑚骨料混凝土的动态劈拉性能试验研究[J].建筑结构学报, 2024, 45(10):229-242.
2.专利
(1)傅强,张兆瑞,赵旭,等.混杂纤维混凝土动态劈拉强度标度律模型的建立方法:CN202110296379.5[P].CN113111410A.
(2) 傅强,何嘉琦,李丹,等.混杂玄武岩-聚丙烯纤维增强混凝土动态强度计算方法:CN202011321502.6[P].CN112632747A.
(3) 傅强,何嘉琦,李丹,等.纤维增强混凝土动态H-B强度准则的建立方法:CN202010405930.0[P].CN111625885B.
(4) 傅强,卜梦鑫,何嘉琦,等.一种建立HBPRC本构模型的方法及装置:CN202011247466.3[P].CN112699520A.
(5) 傅强,卜梦鑫,李丹,等.一种建立HBPRC动态损伤本构模型的方法:CN202010235327.2[P].CN111554362B.
(6) 何嘉琦,傅强,李丹,等.供动态力学热分析的水泥基材料试块制作模具:CN202020681132.6[P].CN212410238U.
(7) 傅强,许文瑞,李丹,等.一种地下水与荷载作用下隧道衬砌混凝土盐蚀试验装置:CN202020115857.9[P].CN211505151U.
(8) 傅强,许文瑞,李丹,等.一种地下水与荷载作用下隧道衬砌混凝土盐蚀试验装置:CN202020115857.9[P].CN211505151U.
3.获奖
(1)建筑材料科学技术奖-城市轨道交通减振板式轨道充填层水泥基材料制备与应用成套技术
(2) 陕西省科技进步二等奖-大型枢纽变电站震致灾变防治与耐久性提升关键技术及应用
(3) 陕西省教育厅科技进步一等奖-隧道衬砌混凝土耐久性基础理论与性能提升关键技术
(4) 陕西省教育厅科技进步一等奖-混凝土结构耐久性损伤预测方法与主动电场控制技术